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This paper deals with the Cesaro means of conjugate Jacobi series introduced by
Muckenhoupt and Stein and Li. The exact estimates of the norms of the conjugate
(C, 9) kernel for 0 <Jd<a+ 3} are obtained. It is proved that when J>o+ 1, the
(C, 0) means of the conjugate Jacobi expansion of a function f converges almost
everywhere to its (Jacobi) conjugate function and so does the (C, « + %) means at
the critical index under the criterius of Lebesgue type by use of the equiconvergence
theorem.  © 1997 Academic Press

1. INTRODUCTION

Let {R(™"(cos 0)} be the sequence of the Jacobi polynomials of order
(a, B), normalized so that R{#(1)=1, which is orthogonal over (0, r)
with respect to the measure

du(0) = du,, ,(0) =275+ sin>*+1 /2 cos™ *10/2d0.

Denote by L =L, the class of functions integrable with respect to d,4(0)
on (0, 7).
For a function fe L, its Jacobi expansion is

S(0) ~

n

I M8

f(n) o PR P(cos 0), (1)
0
where

fn =" £9) R P(cos 9) duuyl )
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are the Fourier coefficients and
pi4 —1
o ={ [ LR Plcos )P dudi) |~
0

To a Jacobi series of the form (1), its conjugate series is defined by

~

i (2“+2)f(”)w(a+1,/f+1)

ey R'** £+ D(cos 0) sin 0. (2)

n=1

This is introduced by Muckenhoupt and Stein [ 7] when a=f5, and by Li
[4] for general a and f. It is also noted in Bavinck [1, Section 6.27] and
in an unpublished note of Gasper.

On the other hand, the (Jacobi) conjugate function f of a function f is
defined in Li [4] by

J(0)=lim 7,(0), (3)
where
70 =[" 7, 10)-G(g) du.yl9).

is the generalized truncated Hilbert transform, where for o> > —1,
- T el N
T, f(0)=] | fuw)dingt,0)
0 Y0

o0
~ Z f(k) w;(ocj—ll,/f-#I)Rgclel,/)’+1)(cos 6)
k=1

x R+ A+D(cos ) sin 0 sin ¢, (4)
cos i =2(cos 0/2 cos ¢/2)*+ 2(t sin 0/2 sin ¢/2)?
+tsin @sin @ cos {— 1,
dift, (1, ) = cop(1 —12)* =1 2P+ 25in* { cos { dit d,

B 2 (a+1)
BT Ta—p) T(f+ 1)

and

1
G(p) = (20 +2) L sEHPELPEH LB+ (s o) sin ¢ ds, (5)
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and
o0
P=P(s,0)= Y s"0'PR™P(cos @)
n=0
is the Poisson kernel. If a=f> —1 or a>pf= —1, we can obtain an

appropriate form for T(p by a limiting way.

It has been shown in Li [4, Theorem 2; 5, Corollary 4] that for any
J€ L.y, the limit in (3) exists for almost every 0 € (0, 7) and the Abel means
of the conjugate Jacobi series (2) converges to f(6) almost everywhere, and
if fe L, then f has the expansion (2), namely,

7 (20 +2) f(n)
o~ X e

@A) R LB (cos ) sin 0. (6)

In this paper, we study the Cesaro means of the conjugate (Jacobi) series
(6) which is defined as

20(+2)f(v+ 1)w(m+l’ﬂ+l)R£}a+l'ﬂ+l)(COS 9) sin 0’

() H -
Sulfs zo Vovta+ f+2 Y

where 47=I"(p+c+1)/I(c+1) I'(p+1). The kernel form of 57 is

Sis0)=[ T, 10)-K(0) diylo)

where
. 20(+2 n ‘ w(oc+1,/f+1) )
K ):T Y Aﬁfvmm““’/””(cosw)sm(p
n v=0

is the conjugate Cesaro kernel. This follows from (4).

Just as the case of trigonometric series, one may expect to prove for con-
jugate Jacobi series the parallel results to those about the Cesaro means of
Jacobi series in [6]. In Section 2, the estimates for the conjugate Cesaro
kernel K° for § >0 are obtained. Section 3 is devoted to the evaluation of
the norm of K? for <a+3. In Section 4, the pointwise convergence
theorem of S°(f; 0) when § >a + 1 is established and the equiconvergence
theorem of the Cesaro means S**'2(f;0) at the critical index is proved
and then applied to establish the convergence theorem of Lebesgue type.

It has been indicated in Li [4] that when a=f= —1, 7~"¢ f(0) and G(¢)
reduce to (f(0 — @) —f(0+ ¢))/2 and (1/7) ctg /2, respectively, so that the
previous definition of f coincides with the conjugate function in classical
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case. In addition, when a>p> —1, T ,» f(0) has some properties of con-
tinuity so that it can be used as a measure of smoothness of f.

PrOPOSITION 1[4, Proposition 1].  Let a>f> —3 and fe L,z. Then

(i) lim, o [T, f()],=0;
) (21T, £(0)| duse)=o0(e**+?), as ¢ — 0, for almost all 0 € (0, n);
(ili) for 0<{<min{a+f+ 1,25+ 2},

|10 1000 dite @) < Msin =<0 | 1/(0)] duoyl)

2. ESTIMATES OF K%(¢) WHEN 6> 0

TueoreMm 1. Let a> —1, B> >0, and dg=[o+ 3]+ 1. Then

I\)\’—‘

(1) K@) <Mn™*2 0<p<mn/2;
(i) if0<I<d,,

ul\.)

1R(9) = G(@)| S Mn* 122932 (m—g)F=12 nTl<op<m
(iii) if 0 =9y,
(K@) = G(@)| SMn™+ 2= =22 =% (n — ) /=12 n7l<g<n
Throughout the paper, denote by M the constants independent of n, ¢
and f and dependent of a, f, and J, possibly different at each occurrence.

To prove Theorem 1, we need the following lemmas. Set y=o+f+2
and

y 1 X X
K P g =5 X ALl R cos g).
nv=0
Lemma 1.
- n+o+1 20042 S .
K(5 — K()+1 + (x+ 1, p+1,0) .
"((p) n+}/+5+1 " ((p) n—l—y+5+1 ((/))Sln(p

This can be directly calculated from the definition of K%(¢).
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LeMMA 2. Let o> —
¢ <m,

Yand B> —1%. Then for 0<d<a+3 and n='<

IK:x,ﬁ,(i)(gp)' <Mna+1/27(5(p7a73/27(5(n._(p)fﬁfl/Z'

Lemma 2 is contained in Bonami and Clerc [ 2, Theorem 2.17.

LemMmA 3. Let {a,} be a sequence and let

n
o __ 4
En_ Z Anfkak'

k=0

Then for any complex numbers O, o,r and nonnegative integer n, the
following equality holds:

" n n—j
YA rrag=Y AL, | Y ASTITPET | (=)l (%)

k=0 Jj=0 v=0

Proof. Let U(o) be the right-hand side of (x). Some tedious computa-
tion yields U(g)=U(s+1). It is easy to get U(0)=3"_, A% r*a,.
Hence (=) holds for =0, +1, +2, .... Since U(o) is a polynomial g, () is
proved for any complex number o.

Proof of Theorem 1. Part (i) follows from Szeg6 [8, (7.32.6)]. In the
following, assume that n~ ' < ¢ <7

We first consider the case when & =J,. It is clear that a +1 <6 <o+ 3.

By Lemma 3, we have

. ) 1 1 o+1 )
KZ((/’)ZZ(“‘FI)SIH(#L {Kzaﬂ,ﬁﬂ,m((p) ,,owr/brwrl_FF Z A}]s+17_/

nj=1

n—j
X|: z A,j;:jl-,vAfK(vaJrl’ﬁJrl’&)((ﬂ) ro(+[)’+v+l:| (1 —r)f}dr,

v=0

and by (5)

G(go)=2(<x+1)sin(pj]{

I M8

A:;,K(l,ochl’ﬁJrl’(s)(gﬂ) roc+ﬁ+v+1:| (1 _r)5+1 dr.
0

v

It follows that

K@) —G(p)=A,+ Ay + 45, (7)
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where

K(“+l’ﬁ+l’5)((ﬂ)

A,=2(oc+1)sin(p{ .

1 o—1 \ \ .
Aé Z A()+]7] Z A?’l_jl VA(:K511+1,/;+1,())(¢)B(V+y7]+1)}5

n j=1 v=0

Ay=—=2(a+1)sing Y AK*+*Fr19(p) Bv+y,d+2)

v=n—20

and
2(x+1) si
Ay =2 6 1) AL KL p) Bln =04 7.0+ 1)
n—o6—1 ) .
+y c(n,v,(s)A‘:Kﬁ,“l’““)(mB(v+y,5+2)},
where

c(nv,0)=(+y+d+1)A°5 +A5_, , —A)

and B(a, b) is the beta function.
Since B(v+7,j)=0((v+1)77) and a+1i<d<a+3, by Lemma 2 we
have that

o—1 n—j

|A1|<M{ o+ 1/2— 0-|-n7<> Z Z n ]—V-‘rl) (v+1)oc+]/2]}

Jj=1 v=0
X¢7a73/276(n_(p)*/f*1/2
S Mn*+ V20 —2=32=0(p _ )~ F=172,
* < N
|4, <M Z Y200 a2 0 ) 112

v=n—20

<Mnoc+ 1/2—(5(p _a_3/2_(5(7[7(ﬂ)_ﬁ_1/2,

and

M . n—o—1 .
Ao w2 E el 1

v=0

x (P—m—5—3/2(n_¢)—/}—1/2_
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It is noted that if n2<v<n—9J—1,
le(n, v, 6)| < Mn°
and if 0 < v<n/2, by Stirling’s formula,
le(n, v, 8)| < M[n° *(v+1)>+n°'].
Thus for A5 we have

|A3|<6{nm+1/26+ Z [n()72(v+1)2+n()71](v+1)o<71/27(>
n

o<v<n/2

+ Z n(5voc1/2(5}(p1(53/2(n_g0)ﬁ1/2

n2<v<n—o-—1

< Mnoc+1/27(5<07a7§73/2(n_ . (p)fﬁfl/z.

Substituting the estimates of 4,, 4,, and A5 into (7) proves (ii) for 6 =4,.
Part (iii), when 0 >4,, follows by adaptation of the arguments in
[2, p.233].
By Lemma 1,

R(p)—G(o)

2042 (x+1,p+1,

= (@) sin
n+y+do+1 " (¢)sing

n+o+1
n+y+o+1

a+f+2

To+1 _ =
(K3 o) = Glon =

G(o), (8)

so that by part (iii) and Lemma 2 and Lemma 4 (in Section 3 below), part
(i) for 0,—1<d<d, follows. Another application of (8) gives the
estimates of K°(¢) for all values of § > 0.

) Ko <d<a+!
3. NORMS OF K%(¢p) WHEN 0<6 1

LEMMA 4. For O<gp<m,

(o +3)2)

G0 =57 (1) Tat 1)

sin =%~ 2¢/2 cos @/2 + O(¢ ~>*~(n — ¢)).

Proof. First we have

a1 pt _ T+ p+H(1—s5) 47" (s, 9)
P( Lg l)(s,(P)_2m+/;+31—,((x+2)1_,(ﬁ+2)(1+S)ﬁ_m_]F|:

4s cos? ¢/2
(1492 |7
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where A(s, @) =1—2scosp+s%, F[x]=F[(f—a)/2, (B—a—1)/2; f+2;x]
and F[a, b; ¢c; x] is the Gauss hypergeometric function (see [3] or [4,
(5.3)]. Since Fla, b; c; x] is a continuous function of x for 0 < x <1 when
Re(c—a—b)>0and c#0, —1, —2, ..., it follows from [ 3, 2-1(7)]

d b
= Fla,b;; x1=ZF[a+1,b+1; ¢+ 1;x]
v

dx
that
4s cos® ¢/2
’F[W]—F[l]lsMA(s,m
and then
LA+1 1—s) A =52 (s,
Pt = (s1>+s)ﬁ¢(ls P11+ ots. o))
where
_ I+ f+4) foo fo—1, |
Aoc/f_2a+ﬁ’+3r(0(+2)['(ﬂ+2) 7 3 421
__Ia+s) ]
T2 Tar2 032866
Thus by (5)

1 o+ p+1 1—
G(p)=2(a+1) Aa/ff ? (1=5) A=*732(s, @) sin ¢ ds

12 (14s)f—1
+0(¢ *(n—9))

a+1)A4,; ' (1—s)sin o
=(2ﬁ,3,2ﬁf -y P ds+ 00~ (n—0)),

12 A*P(s, @)

since s* AT (1 +5)* AP =227+ (1 4 O(1 —5)) for S<s<1.
It is easy to get, for J<s<1,

L I +0<(1—s)<p2>
Au+5/2(s, (p)_[(l—s)2+2(l—cos (p)]oc+5/2 Aoc+7/2(S, (p) .
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Therefore,
(a+1) A,y jl (1—s)sing

28=2=2 )5 [(1—5)*+2(1 —cosg)]* 37>

B T(a+3/2)
S22 AEIN(12) Do+ 1)

G(p)=

ds+O0(p > Y(n—p))

sin =*~2¢p/2 cos ¢/2 + O(¢ ~**~ (. — @)).

LEMMA 5. Let a> —2% and f= —3. Then

|K£Ia+1,/3+1,5)(
0

200+ 2 r

n+y+oé+1
22 (0 3)
- 7Pr(a+ 1)

®)| sin ¢ d:uoc/f((P)

logn+0(1), Jd=a+1i;

=Bmﬂ(snoc+l/27(5+ O(nocfﬂféfl)_i_ O(n171/27(5)+ 0(1)’

0<d<a+3,
where

T(5+1) I((20— 25+ 1)/4) T (28 + 3)/4)
2 (4 1) T((a+ f— 0 +2)/2)

Bq/;o‘ =

If =—3or=a—3, then O(n*#=°~")+ O(n* ') in the second case
must be replaced by O(n*~°~'?logn).

Both of the two cases in Lemma 5 can be proved by the same manner
in [ 6, Section 3].

THEOREM 2. Let a> —3 and B> —3. Then

L= | 1K) o)

20 (o +3)
= ] o(1), d=a+1;
T2 Tt 08t ol “t2
=Baﬁo~n°‘+1/2"5 +O0(n*F=°=H 4+ Om =272+ O(logn) + O(1),
0<d<a+i,
where B, s is given in Lemma 5. If f= —} or 6 =a— 3, then O(n*~F~°~") +
O(n*~"?7°) in the second case must be replaced by O(n*~°~"*logn).

It is clear that when a= —J and 6=0, L°=(2/z)logn+ O(1) which
coincides with that in the classical case (cf. [9, p. 67, (12.3)]).
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Proof. By (8) and Theorem 1(i),

Lg:j]’: IR2(9) — G(9) + G(o)| dit (@) + O(1)

Jn
1/n

+0(1 f [IK; () = G(@)| +n7'G(9)] dit,g() + O(1).

1/n

20042

wipror1 KT sin g + Glo)| duayl @)

If o — 3 < <o+ 3, it follows from Theorem 1(ii) and Lemma 4, the second
term on the right-hand side above is O(1), so that

= (7 200+ 2 .
L= s r1 Ko 00)sin g+ Glo)| dusylp) + 0D (9)
By Lemma 3

20 (o +3/2)
I(12) T(a+1)

Applying this and Lemma 5 to (9) proves the theorem for o — 3 < <o + 1.
To evaluate L** 2, we note that

J,, 16001 ducytp) = log n+ O(1).

K(zx+1,,[?+1,zx+l/2)(¢) =c(n) R512<x+5/2,/;’+1)(cos (ﬂ)

n

+

J

by [8, (9.41.13)] or [6, (2.2)], where

C_/-(n) Kil:x-%— 1,ﬁ+1,oc+j+1/2)((p)
1

I8

272a7/)’77/21"(a+ 3/2)
[(a+2) I'(20+7/2)

C(l’l)z n2a+4+0(n2a+3) (10)

and |¢;(n)| <Mj > /~1¥2 By the argument similar to that in [6, Sec-
tion 3], it is not difficult to find that the contribution from the second term
above to the integral in (9) is O(1) so that

T
Eer 12 _ J
1/n

X RZ*+3/2F+D(cos @) sin ¢ 4+ G(¢) | du4(¢p) + O(1).

(200 +2) ¢(n)
n+y+o+1




CONJUGATE JACOBI SERIES 113

By (10), Lemma 4, and [8, (4.1.3), (7.32.6) ], the contribution of the interval
7/2 < ¢ <7 to the integral above is O(1). Hence, by (10) and Lemma 4 again,
using [8, (8.21.18)],

—12
REo 25 D gog ) =LA TR L0 D) s pan

n I(12) T(n+ 20 +7)2)
x {cos(Np +n)+O0(n"'¢ "}, I/n<o<n/2,

yields

fariz_ _E@® j”/z cos A2 g2

_2oc+/3'+2 2oc+1/2

cos(Ne +#) +cos ¢/2
1/n

xsin 22 o/2du, () + O(1)
E(a) jn/z cos(Ng +1)
1/n

+1|sin "> "2 /2 du,y(@) + O(1)

:2oc+p’+2 ya+1/2
E(0) 72 .,
=i jl/n sin= > 2 /2 du, (@) + O(1)

=FE(a)logn+ O(1),
where E(a)=2I(ac+3/2)/[(12) I'(a+1), N=n+Q2a++9/2)/2, n=
—(a+3/2)n.

Another application of Lemma 1 and Lemma 5 gives the desired result
for all values of 0 <J <a+ 1.

4. CONVERGENCE OF 59(f;0) FOR 6 >a+ 1
4.1. The Convergence of S°(f, 0) when 6> o+ 3

THEOREM 3. Let a>f> —4 and d>a+5 and let feL,,. If for some
0e0,7),

| 170 A0 duogig) =02 as e, (11)
then
Tim {§3(/30) =710} =0, (12)

so that lim,,_, . §°(f; 0) =1(0) almost everywhere.
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W=
o
=
[oN

Proof.  Without loss of generality, assume that a> —1, > —
a+3<0<do=[a+3]+1
Write SO(f; 0) —f1,,(0) = U+ V + W, where

U= T f K() ) d:uocﬁ((p)a

First by Theorem 1(i) and (11), we have
1/n
|U|<Mn2“+2j T, £(0) dufl@)=0(1)  as n— .
0

For V, by Theorem 1(ii) and (11), it follows from a standard argument
that

/2
VIS Mt 20 [T, f(0) 9 R duylp) =o(1)  as n— o,

1/n

At last by Theorem 1(iii) and Proposition 1(iii), we have

|W|<Mn°‘+'/2*°‘j/ 1T, f(O)] (x— )"~ duu 5 p)

<Mr* 1P sin R0 | £()] ditagl)
0
=o(1) as n— 0.

This proves (12), and by Proposition 1(ii) we finish the proof.

4.2. The Convergence of 8**'2(f;0) at the Critical Index

THEOREM 4 (Equiconvergence theorem). Let o> > —1 and let fe L.
If for some 0€(0,n), (11) is satisfied, then the following statements are
equivalent:
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—_
—

) lim S5 0) = F0)) =0;

1 =~
(i) tim — [ T, f(0)- Ky IR ) sin g dy(0) = 0;

n—o N Jo

/2
(i) tim n23 [ T, f(0)- REHPP (@) sin g dityl ) = 0;
0

n— oo

. . 7'[/2~
(V) Tim 2" [T, f(0) o so(N@) 92 di_y o ya(9) =0;

n— oo 1/n

/2 .
(v) lim [T, f(0)-sin(No —om) di_y o 1a(9) =0,

n— o Yl1/n

where J,, , 5,(1) is the Bessel function of the first kind of order 20+ 3 and
N=n+ (2a+f+9/2)/2.

Proof. By Lemma 1. We have

S5t 0)=Fin(0)

_% T (c+ 1, B+ 1,0+1/2) .
_n+y+5+1 0 wa(H)KH ((p) SIn(pdluzx/}((p)
n+o+1 Sat3n ~ a+p+2 ~
- x . _ L N ) 1
n+y+5+1(Sn (f,o) fl/n(o)) n+y+(5+1f1/n(0) ( 3)

By Theorem 3, the second term on the right-hand side of (13) is o(1) if (11)
is satisfied at 0€(0, 7). In the meantime, under the same condition it is
easy to find that the last term is o(1) as n —» oo by use of Lemma 4. This
proves the equivalence of (i) and (ii). The equivalence of (ii) with (iii)—(v)
can be proved by the same manner as in Li [6, Section 5].

Just as the case of ordinary Jacobi series (cf. Li [6]), the equicon-
vergence forms of §**!2(f; 0) in Theorem 4 can be used to deduce some
convergence criteria for S**2( f; 0) such as those due to Lebesgue, Salem,
and Young. Here we only state the theorem of Lebesgue type, the proof of
which is completely the same as that of [6, Theorem 6.1].

THEOREM 6. Let a=f> —3 and let fe L,,. If for some 0€ (0, ), (11)
is satisfied, in addition,

lim fn/z |Tr/)+sf(0) B T(/;f(e)|

n—oo Yg (ﬂ

dep =0, (14)
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then

lim {S’Zﬂ/z(f; 0) —]71/;1(9)} =0.

n— oo

Moreover, if (14) holds for ae. 6¢€ (0, n), then lim, ., S*T'2(f;0)=f(0)
for ae. e(0, ).

1.

2.
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